Abstract
Human Activity Recognition (HAR) plays a significant role in several fields by automatically identifying and monitoring human activities using advanced techniques. It enhances safety, improves healthcare services, optimizes fitness routines, and enables context-aware applications in various fields. HAR contributes to a more efficient and intelligent interaction between humans and technology. It has emerged as an essential research domain with applications in healthcare, smart environments, and human-computer interaction. This study aims to provide a comprehensive survey of the evolving landscape of HAR, including key methodologies, techniques, and trends in existing research. The study discusses various applications of HAR and their significance in modern smart environments. The survey also highlights different types of HAR and data collection techniques. Additionally, it explores various methods for analyzing the collected data and provides a comprehensive analysis of existing human activity classification datasets. It offers valuable insights into understanding the strengths and limitations of various HAR techniques. The study also discusses various challenges and future directions for HAR.